Gm266 sgRNA CRISPR/Cas9 All-in-One Lentivector set (Mouse)
Cat. No. | 21966114 |
Name | Gm266 sgRNA CRISPR/Cas9 All-in-One Lentivector set (Mouse) |
Unit | 3 x 1.0 µg |
Description | abm's Knockout sgRNA vectors and viruses are ready to use in your CRISPR Gene Knockout experiment. These vector and virus products come as a set of three sgRNA targets which are designed to guide Cas9 to cleave exonic gDNA resulting in frameshift mutations and ultimately gene knockout. Available constructs include All-in-One (Cas9 and sgRNA expression) and sgRNA only (no Cas9 expression) – navigate to Custom Option to select the latter. Our CRISPR vectors and viruses are also available in a variety of formats including Lentivirus, AAV and Non-Viral. |
Gene Name | Gm266 |
Accession Number | NM_001033248.3 |
NCBI Gene ID | 212539 |
Species | Mouse |
Vector Map | pLenti-U6-sgRNA-SFFV-Cas9-2A-Puro (click blue link to view) |
System | Lentiviral Vector |
Target Sequence | Sequence available upon placing order |
Storage Condition | -20°C or below |
QC | Restriction Enzyme Digest and Sequencing |
Guarantee | ABM guarantees that at least one out of the three sgRNA Lentiviral constructs purchased in a set designed to be used with Cas9 Nuclease will result in complete gene knockout in over 50% of cells at 1 week after successful transduction and drug selection due to frameshift mutation. The gene knockout efficiency can be quickly examined by Surveyor assay and confirmed by Sanger sequencing or other functional assays. If in extremely rare cases that significant knockout was not achieved, we would provide a one-time replacement of three new constructs with alternative sgRNA sequences, or a one-time discounted replacement of a sgRNA lentivirus set with alternative sgRNA sequences. To qualify for this replacement, customers must provide Surveyor assay data. Before sending your inquiry, please make sure you have optimized your experiments as far as possible, this includes (where applicable) increasing your MOI (up to 10) and the duration of infection (up to 72 hours), and carrying out clone screening before assaying for knockout. Please also provide data to show that a reporter lentivirus was used to show that you have optimized the MOI to use on your target cell line. For vector transfection, you will need to prove that there is good enough vector transfection by qPCR on Cas9 or Puro for the 'All-in-One' vectors, qPCR on Neomycin for constructs containing only the sgRNA, or successful puromycin/neomycin selection. In addition, please provide Surveyor Assay or Sanger Sequencing data on at least 20 isolated clones. ABM limits its obligation and liability for the success of this technology to providing one free replacement of any sgRNA lentivector set product only or one discounted replacement sgRNA lentivirus set. The replacement set will not be covered by the same guarantee. If these constructs are also considered to be ineffective then it is most likely due to unknown reasons. The one-time replacement guarantee cannot be applied for sgRNA lentivectors that are ordered as an individual target and not in a set of three. |
Caution | This product is for research use only and is not intended for therapeutic or diagnostic applications. Please contact a technical service representative for more information. |
Material Citation | If use of this material results in a scientific publication, please cite the material in the following manner: Applied Biological Materials Inc, Cat. No. 21966114 |
Print & Download Datasheet
What is the difference between Retro-, Lenti-, and Adeno- viruses? | |
Retrovirus: Classic, can integrate into the genome but with low transduction efficiency. They are useful for gene transfer and protein expression in cells that have low transfection efficiency with other transfection reagents. Lentivirus: Can integrate into the genome with relatively high transduction efficiency and they are very useful for cells that have low transfection efficiency with other transfection reagents. No special competent cells required, as they are stable plasmids. Lentiviruses are a powerful tool for stable gene transfer to both dividing and non-dividing cells in vitro and in vivo. Adenovirus: Only work transiently (about 7 days) but have almost 100% transduction efficiency. Adenoviruses can infect a broad range of cell types with the highest efficiency and infection is not dependent on active host cell division. A second key feature is that high virus titers and high-level gene expression can be obtained in most mammalian cells.
|
What are the correct concentration units for each recombinant viral particle? | |
For lentiviruses and retroviruses, they are measured in CFU/ml (colony-forming units per millilitre). Transduction with lentiviruses and retroviruses can cause the formation of colonies, which can be quantified for concentration. For AAV the titer is measured as genome copies per mL (GC/mL). Adenoviruses are measured as PFU/ml (plaque-forming units per millilitre). Transduction with adenoviruses will kill packaging cells, forming plaques in the process for quantification. The concentration for all three types of viruses can also be classified as IU/ml (Infectious Units/ml). Ultimately, the units refers to the viral particles and different units reflect the different assays involved.
|
What do I use to check if my cells were successfully immortalized by the SV40 agent? | |
We have an SV40 T antibody that can be used for the western blot analysis. The catalog number is G202.
Otherwise, a qPCR primer can be designed on the SV40 gene for qPCR analysis. The sequence can be found in the link below:
http://www.abmgood.com/pLenti%20SV40-Vector-Location-Map.html
|
What are the primers to use for SV40 identification? | |
SV40 Forward Primer Sequence
5’ ACTGAGGGGCCTGAAATGA
SV40 Reverse Primer Sequence
5’ GACTCAGGGCATGAAACAGG
These are qPCR primers and the band size is 61 bp.
|
What advantages / disadvantages exist between the Lenti-SV40, -SV40T, and SV40T+t vectors? | |
There are simply differences in the content of all vectors due to customer demand for variety. Lenti-SV40 will contain the whole SV40 gene, -SV40T, the large T Antigen only, and -SV40T&t the large and small T antigens only.
It is up to the end user to decide which vectors will best suit their project, however we have successfully used Lenti-SV40 (whole gene) in a wide range of immortalization projects.
|
What is the accession number for the SV40? | |
The SV40 covers the entire genome and the accession number is J02400.1. You can use this information to design primers for conventional PCR as well.
|
How long after transduction can the infection efficiency be observed? | |
You can observe transduction efficiency from 48 hours up to 5 days after infection.
|
What are the primers to use for SV40T and SV40T tsA58 detection? | |
PCR primers:
SV40T Forward Primer Sequence
5’ AGCCTGTAGAACCAAACATT 3'
SV40T Reverse Primer Sequence
5’ CTGCTGACTCTCAACATTCT 3'
The two primers should amplify the region between 3677-4468bp, giving a 792bp fragment.
|
What is the sequence of the SV40 large T antigen? | |
This information can be accessed on this page by clicking on "pLenti-SV40-T" under vector map. The Large T antigen is at position 5079-5927.
|
For G221 and LV620, what does the 'V12' in RasV12 mean? | |
The V12 means that amino acid # 12 is mutated from a Valine to a Glycine. Other than that, the sequence matches the coding region of HRAS perfectly (NM_005343).
|
Where is the SV40T tsA58 gene sequence? | |
The SV40T tsA58 gene is located between 3138-5264bp, with the Alanine-to-Valine mutation at amino acid 438.
|
There are no references for this product yet!
This product has no review yet.
Other Gm266 Products
Gm266
Mouse
Gm266
Lentiviral
Vector
Gm266
AAV
Vector
Gm266
Adenovirus
Vector
Gm266
Protein
Vector
Gm266
ORF
Vector
Gm266
siRNA
Vector
Gm266
miRNA
Vector
Gm266
3'UTR
Vector
Gm266
CRISPR Knockout
Vector
Gm266
CRISPR Activation
Vector
Gm266
Control Vectors & Viruses
Vector
Gm266
circRNA
Vector
Gm266
Internal
Vector